4-正己基苯甲酸-4'-氰基苯酚酯液晶的喇曼光谱研究 周义新 黄 涛 (南京师范大学物理系)

提要:本文对 4-正已基苯甲酸-4'-氰基苯酚酯(简称 HBACPE)液晶在 100 cm⁻¹~1700 cm⁻¹范围内的喇曼光谱作了分析。并根据 HBACPE 淀晶在不同相态的喇曼光谱变化,对苯环和烷基链的构态作了讨论。

Study on liquid crystal 4-n-hexylbenzonic acid-4'-cryanophenyl ester by Raman spectra

Zhou Yixin, Huang Tao (Physics Department, Nanjing Normal University, Nanjing)

Abstract: Raman spectra of 4-n-hexylbenzonic acid-4'-cryanophenyl ester (for short: HBACPE) were recorded and analysed in the regions of 100cm⁻¹ to 1700 cm⁻¹. Compared with the liquid crystals of aromatic ester, the molecular structure of HBACPE spectral change of HBACPE in different phases, the conformations of benzone rings and alkyl chain were discussed.

引言

近年来,用喇曼光谱技术探索液晶分子 结构、分子内部和分子之间作用力等性质已 越来越引起人们的重视。它提供并解释了大 量有关液晶在各相态表现出的固有特证^[1]。

本文基于液晶 HBACPE 分子 与液晶 CPPOB 分子结构的相似性,对前者结构作了 一些讨论。通过对 1000~1700 cm⁻¹范围内 苯环面内弯曲 7c-n 振动模变化的分析,讨论 了苯环平面相对于酯桥键平面的扭曲情况, 而通过对 1000 cm⁻¹以下的谱线分析,讨论 了正己(烷)基链在不同相态下的构态变化。

;验

液晶 HBACPE 样品由清华大学化学 系 提供,其熔点为 44.5℃,清亮点为 47℃,在 44.5~47℃ 之间为向列相,分子式为:

C6H13-0-00-0-0N

测试时,未对样品进一步纯化,直接放置在常规处理后的样品池内。

采用 Raman Logb 1403 型光谱仪器记录 100~1700 cm⁻¹ 范围内的喇曼光谱。用 Ar⁺ 激光器的 488.0 nm 线作激发 光源,以

收稿日期: 1987年6月29日。

获得 514.5 nm 波长的喇曼光谱。 Ar⁺ 激光 输出功率为 100 mW, 到达样品约为 20 mW, 激光束直径约为 1.2 mm。取背向式散射, 双 单色仪入射与出射狭缝均选为 200 μ m, 扫描 步长 2 cm⁻¹, 积分时间 1 s, 温控炉温控精度 为 ±0.5 °C。 实验中, 由于 HBACPE 液晶 中存在着少量杂质, 受到光热分解的影响, 有 些弱喇曼谱线被荧光掩盖, 在一定程度上影 响了液晶喇曼谱的清晰度。本文对一些较弱 的喇曼谱线的确认, 是参阅和测定 HBACPE 同系列液晶的喇曼光谱来进行的。

结果与讨论

1. 谱线认定

液晶 HBACPE 在固相 O(38°C、44°C)、 向列相 N(46°C)和各向同性相 I(52°C、62°C) 的喇曼光谱如图 1 所示。基于对同系列液晶

PBACPE 的喇曼光谱分析和与其它 取代苯 衍生物喇曼光谱和红外光谱的比较^[2,3,4],对 各相所有 HBACPE 液晶的喇曼光谱认定如 下: 1612 cm⁻¹ 和 1602 cm⁻¹ 是典型的苯环衍 生物双峰⁵³,是1,4(对位)取代苯环中 O=O 伸缩引起的苯环在平面内的骨架变形振动模 (vc=c), N相和 I 相中的 1180 cm⁻¹ 峰为对 位取代苯 O—Η 面内弯曲振动模(βo-n)。由 于液晶以〇相进入N相过程中, 1172 cm⁻¹ 峰的相对强度明显减小,而后在1180 cm⁻¹处 出现新峰,所以可认为:在O相中, BC-H与 1172 cm⁻¹ 峰重叠, 当液晶进入 N 相时, 由于 此时苯环的扭曲变化, βc-H 才从 1172 cm-1 峰中分裂出来,频移到1180 cm⁻¹ 处。液晶 分子中对位取代苯的特征喇曼峰还体现在 828 cm⁻¹ 处的 0—田 面外振动 (7′c-H) 和 636 cm⁻¹ 处的苯环伸缩振动模(vring), 另外, 苯环变形振动模δc-H可能与νasc-o-c反对称 伸缩模在 1260 cm-1 峰重叠。对于 HBACPE 液晶分子中二对位取代苯间的酯桥键

 $\begin{pmatrix} -C-O-\end{pmatrix}$ 来说^[b],其对称伸缩模 ν_{sc-O-C} 为 1212 cm⁻¹,反对称伸缩模 $\nu_{asC-O-C}$ 为 1262 cm⁻¹,伸缩振动模 $\nu_{c=0}$ 不在我们所测波 数范围 ($\nu_{c=0}$ 应在 1730 cm⁻¹ 附近出现)。 氰基的喇曼峰则可能反应为 C-ON 的面外振 动 $\gamma_{c-CN}(170$ cm⁻¹ 左右)和 C-ON 伸缩振动 $\nu_{c-CN}(1170$ cm⁻¹ 左右)和 C-ON 伸缩振动 $\nu_{c-CN}(1170$ cm⁻¹ 左右)。对于液晶 I 相中出 现弱而宽的 334 cm⁻¹,1000 cm⁻¹ 附近的峰被 认定为正己(烷)基链中 C-O 的招摆(τ_{c-C}) 和 C-O 伸缩 ν_{c-C} 振动,1150 cm⁻¹ 峰认定为 正己(烷)基链中 OH₂的摇摆振动(γ_{CH})。液 晶 HBACPE 其它晶格振动模和分子振动模 除部分太弱被杂散光掩盖或重叠外,均不出 现在 100~1700 cm⁻¹ 范围的波数中。

2. 固体 HBACPE 液晶的分子结构

液晶的相变是液晶分子之间的再排列和 改变分子各基团振动情况的过程,这种过程 必然导致液晶晶格振动模和分子振动模的改 变而反映到喇曼光谱的变化上来。为了便于 分析液晶 HBACPE 在不同相态中喇曼光谱 的变化与对应分子结构的关系,下面先讨论 一下固相 HBACPE 液晶的分子结构。

H. Hartung 等人在比较固相芳酯类液 晶 PB、NPOOB 和 CPPOB 的分子结构 时,

正已烷基 0-0 伸缩振动模 0元 3 的 则 曼

发现酯桥键-O-O-和二个对位取代苯环 OOC中的键长和键角是基本一致 OO

的, 差别只在于酯桥键 -0-0-平面和二 对位取代苯环平面之间的 扭转角 θ_{ϕ} 的不 同印。对仅在分子尾部一个为烷氧基 (--OC₅H₁₁)、另一个为烷基(--C₆H₁₃)之差 的 CPPOB 和 HBACPE 液晶来说, 可推论 出,在固相时, HBACPE 液晶的非氢键分子 的结晶参数,除将CPPOB分子结构参数^{cri}中 的 C(5)-O(1), O(1)-C(6) 键长和 O(1)-C(6) - C(7), O(1) - C(16) - C(8), C(5) - C(6) - C(7), O(1) - C(16) - C(7), C(7) - C(7) - C(7)0(1)-0(6), C(4)-C(5)-O(1) 键角作必 要的修改外,其它是适用的,此时分子中 C--田键长一般在 0.092~0.102 nm 之间, 而液 晶 HBACPE 分子的扭转角 θ , ϕ 是不同于 CPPOB 液晶分子中的 90°(θ) 和 0°(ϕ) 的. 它们相对应的分子几何结构如图2所示。当 然,这有待于进一步实验论证。

图 2 液晶 CPPOB 和 HBACPE 的分子结构

3. HBACPE 分子的旋转同分异构体

从以上讨论可知,固相时的 HBACPE 液晶分子结构是由稳定性好、刚性较强的酯 桥键连结二个对位取代苯成为分子核、二端 再分别连接伸展状的正己烷基链和氰基而成 (图 2(b) 所示)。由此,用喇曼光谱来讨论 HBACPE 液晶分子在相变中的结构变化。

首先,分析图1中1000~1700 cm⁻¹范 围内的喇曼光谱,在 C、N 和 I 相时, HBACPE 液晶分子中的二对位取代苯环的 $\nu_{C=C}$ 振动模均为1602 cm⁻¹和1612 cm⁻¹,基 本不变,这说明二对位取代苯环具有相对好 的稳定性,其结构参数不受液晶相变的影响。

The Day of the Day of the

二对位取代苯之间的酯桥键\---C-O-/ 其 *v*asC-O-C, *v*sC-O-C 振动模在 C、N 相中没有位 移(1262 cm⁻¹, 1212 cm⁻¹),在 I 相中则分别 出现小于6 cm⁻¹的位移。由此可见, 酯桥酯 具有相当的结构稳定性,这与其它方法证实 的芳酯类液晶具有较稳定的物化性能是一致 的(液晶物化性与连接二苯环的桥键是密切 相关的)。 氰基 vc-cN 振动模的喇 曼峰由 C 相时的 1172 cm⁻¹ 频移到 I 相的 1166 cm⁻¹, 减小了6cm-1,对此,我们认为:这是由于 HBACPE液晶随着温度的升高,氰基获得了 较大振动自由度, C---CN 之间的键力减小而 引起的。综上所述,液晶 HBACPE 分子结 构中的二对位取代苯、酯桥键和氰基在相变 过程中,对应的结构参数变化不大。

液晶 HBACPE 分子电子构态的变化 与 苯环2围绕 C--O键(θ表示)或苯环1围绕

表1 液晶 HBACPE 苯环的 β_{0-H} 喇曼频率

相态	频率 cm-1	温度
C相	1172	38°C
C 相	1170	44°C
N相	1180	46°C
I相	1182	52°C
工相	1180	62°C

C--C键(φ表示)的扭转情况是密切有关的, 这种扭转对氰基和酯桥键C-O--C的影响 并不大,但对对位取代苯环的 C—H 面外弯曲振动有着强烈的影响,表1为1170~1200 cm⁻¹范围内液晶分子在不同相态时所对应的 β_{C-H} 喇曼振动频率,扭转角 θ 或 ϕ 与 β_{C-H} 喇曼峰有着一定的关系。

苯环上的 田 原子与酯桥键双键 C 原子 上的 O 原子之间的距离 r 随着苯 环围绕 酯 基的扭转角 θ 或 φ 角的变化而改变, 对于非 成键成对原子的相互作用, 其势能函数可用 指数的形式来表示^[1], 假设苯环的面内弯曲 变形振动是谐振的, 可导出苯环 β_{C-II} 振动频 率和 H······O二原子之间相距 r 的关系.

 $\nu^{2} = \nu_{0}^{2} - B[\exp(-Cr)]$ (1) 其中 r 为 θ 或 ϕ 的函数, ν_{0} 为非取代苯环 β_{C-H} 的喇曼振动频率($\nu_{0} = 1177 \text{ cm}^{-1}$), B, C为二待定常数, 由 X 射线衍射测定二个相时 的 θ 或 ϕ 再与之对应的喇曼峰 波 数来确定。

Masagi Mizuno 等人^[8]在研究 MBBA 和 BA 液晶过程中,发现苯环1绕 C---C 键 扭转(φ)并不是液晶构态变化的主要原因, 而是苯环2绕 O-N 键扭转(θ) 起主要作用 的。 假如液晶 HBACPE 的构态也来自苯环 2绕 C—O 键的扭转(θ)这个主要原因, 那么 (1)式中的r应为 θ 的函数。从图1的喇曼 谱可知, 在 C 相时 β_{C-H} 为 1172 cm⁻¹ 峰, 且 改变温度峰值不变, 说明整个 C 相的扭转角 $\theta_{\rm c}$ 为一常数。在 N、I 相区中, $\beta_{\rm C-H}$ 均为 1182 cm⁻¹峰, 扭转角 θ_N 等于 θ_I , 由于液晶 HBACPE从C相转化到N、I相后的 BC-H 喇曼峰增加了10 cm⁻¹, HBACPE分子在 C-N相变时, 扭转角 θ 或 ϕ 发生了明显变 化,因此, θ 或 ϕ 对HBACPE的O-N相变 起决定性作用。而对于 C 相和 N、I 相中的 液晶分子是分别对应的二对位取代苯环1,2 围绕酯桥键平面扭转的旋转同分异构体。

4. 己(烷)基链构态

正己烷基链是酯桥键连结二个对位取代 苯形成的液晶分子的一个端基。其特征为: 在 100~1160 cm⁻¹ 的喇曼光谱范围内

(图1所示),液晶 HBACPE 处于 C 相和 N 相时, 只出现很弱的苯环 YC-H 面外 振动 峰 (828cm⁻¹)和苯环伸缩振动峰 vring(636 cm⁻¹), 其它喇曼峰均淹没在杂散光中。当液晶进入 I相后, 喇曼峰发生了明显的变化。在T=52°C 时,除苯环 γ_{C-H} 的 824 cm⁻¹ 振动峰外, 在1032 cm⁻¹ 处还出现一个弱而宽的被认定 为正己烷基 C-C 伸缩振动模 (vc-c) 的 喇曼 峰,在1150 cm⁻¹处出现了正己烷基的 CH, 摇摆振动 (Y_{CH2})。在 62°C 时, 又出现 334 cm⁻¹、520 cm⁻¹的新峰,它们被认为是由正 己烷基链中C--C的扭摆振动(rc-c)所引起。 原来苯环 YC-H 频移到 766 cm⁻¹ 附近且形成 一个宽而弱的喇曼峰。上述的这些现象说明 了:在液晶的 I 相态中,正己烷基链获得了较 大的自由度,除正己烷基链上的氢原子运动 变化形成各种结构异构体外,由于正己烷基 链较长已不显伸展态而卷曲。

正己烷基链的构态对液晶分子的堆集态 有很大的影响。在 C 相和 N 相时, 晶体和液 晶的有序性, 正己烷基链基本处于图 2 所示 的伸展状态。而在 I 相时, 正己烷基链获得了 足够的能量和运动自由度, 使较长的基链发 生变化和卷曲, 这种变化破坏了液晶分子堆 集的有序性。因此, 液晶端基链段的长短、运 动状态均直接影响到液晶的各种物化性质。

 B. J. Bulkin, in "Advances in Infrared and Raman Spectroscope", Vol. 8, ed.: R. J. H. Clark and R. H. Hester, (Heyden, London), 184(1981)

献

参老文

- 2 潘家来,激光喇曼光谱在有机化学上的应用(化学工业 出版社),1986
- 3 T. V. K. Sarma, Appl. Spectroscopy, 40, 933(1986)
- 4 R. O. Kagel, in "Handbook of Spectroscopy", Vol.
 2, ed.: J. W. Robinson (ORC Press), 107(1974)
- 5 (美)中西香尔, P. H. 索罗曼著, 王绪明译, 红外光谱分析 100 例(科学出版社), 1984
- 6 岛内武彦,红外线光谱解析法(科学出版社),66(1960)
- 7 U. Baumeister and H. Hartung, Mol. Cryst. Liq. Cryst., 69, 119(1981)
- 8 Masagi Mizuno and Takako Shinoda, Mol. Cryst Liq. Cryst., 69, 103(1981)